Asymptotic Distributions of the Maximal Depth Estimators for Regression and Multivariate
نویسندگان
چکیده
We derive the asymptotic distribution of the maximal depth regression estimator recently proposed in Rousseeuw and Hubert (1999). The estimator is obtained by maximizing a projection-based depth and the limiting distribution is characterized through a max-min operation of a continuous process. The same techniques can be used to obtain the limiting distribution of some other depth estimators including Tukey's deepest point based on half-space depth. Results for the special case of two-dimensionalproblems have been available,but the earlier arguments have relied on some special geometric properties in the low dimensional space. This paper completes the extension to higher dimensions for both regression and multivariate location models.
منابع مشابه
Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملAsymptotic expansions and higher order properties of semi-parametric estimators in a system of simultaneous equations
Asymptotic expansions are made for the distributions of the Maximum Empirical Likelihood (MEL) estimator and the Estimating Equation (EE) estimator (or the Generalized Method of Moments (GMM) in econometrics) for the coefficients of a single structural equation in a system of linear simultaneous equations, which corresponds to a reduced rank regression model. The expansions in terms of the samp...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملAnalysis of Hybrid Censored Data from the Lognormal Distribution
The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998